V = 1936.2 (7) Å³

Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$

 $0.25 \times 0.18 \times 0.15 \text{ mm}$

5538 measured reflections

4500 independent reflections

3819 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

T = 291 (2) K

 $R_{\rm int} = 0.038$

256 parameters

 $\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.45$ e Å⁻³

Z = 4

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-[(3,5-Diphenyl-1*H*-pyrazol-4-yl)methyl]benzonitrile ethanol hemisolvate

Mei Yu

Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Tianjin 300192, People's Republic of China Correspondence e-mail: yumei@eyou.com

Received 29 April 2007; accepted 3 May 2007

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.003 Å; R factor = 0.079; wR factor = 0.213; data-to-parameter ratio = 17.6.

In the title compound, $C_{23}H_{17}N_3 \cdot 0.5C_2H_6O$, two pyrazole molecules are bridged by one ethanol molecule through N— $H \cdot \cdot \cdot O$ and $O - H \cdot \cdot \cdot N$ hydrogen bonds. The ethanol solvent molecule is located on a mirror plane. These trimolecular units are linked by $C - H \cdot \cdot \cdot N$, N $- H \cdot \cdot \cdot O$ and hydrogen bonds involving the nitrile groups and ethanol OH as acceptors and $C - H \cdot \cdot \cdot \pi$ stacking interactions between phenyl groups.

Related literature

For related literature, see: Haghiri *et al.* (2003); Huang *et al.* (2007).

Experimental

Crystal data

 $\begin{array}{l} C_{23}H_{17}N_3 \cdot 0.5C_2H_6O\\ M_r = 358.43\\ \text{Monoclinic, $P2_1/m$}\\ a = 6.1301 (12) \text{ Å}\\ b = 34.541 (7) \text{ Å}\\ c = 9.4459 (19) \text{ Å}\\ \beta = 104.52 (3)^\circ \end{array}$

Data collection

Rigaku RAXIS RAPID IP diffractometer Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\rm min} = 0.98, T_{\rm max} = 0.99$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.079$ $wR(F^2) = 0.214$ S = 1.084500 reflections

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1\cdots N2$	0.77	2.53	2.786 (2)	102
$O1 - H1 \cdot \cdot \cdot N2^i$	0.77	2.53	2.786 (2)	102
$N2-H2\cdots O1$	0.91	1.91	2.786 (2)	160
C15−H15···N3 ⁱⁱ	0.93	2.70	3.470 (3)	141
$C6-H6\cdots Cg1^{iii}$	0.93	2.72	3.601 (2)	159

Symmetry codes: (i) $x, -y + \frac{1}{2}, z$; (ii) -x + 1, -y, -z + 1; (iii) x - 1, y, z - 1. Cg1 is the centroid of the C10–C15 ring.

Data collection: *RAPID-AUTO* (Rigaku, 1999); cell refinement: *RAPID-AUTO*; data reduction: *RAPID-AUTO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2001); software used to prepare material for publication: *SHELXTL*.

This work was supported by Institute of Biomedical Engineering, Chinese Academy of Medical Sciences.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2234).

References

Bruker (2001). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Haghiri, A., Lerner, H.-W. & Bolte, M. (2003). Acta Cryst. E59, 0873-0874.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Huang, H.-P., Wu, Q., Liu, L.-X. & Sun, Q.-F. (2007). Acta Cryst. E63, o1473o1474.

Rigaku (1999). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, o2863 [doi:10.1107/S1600536807021812]

4-[(3,5-Diphenyl-1*H*-pyrazol-4-yl)methyl]benzonitrile ethanol hemisolvate

M. Yu

Comment

Substituted pyrazole tends to form cyclic poly-membered clusters through intermolecular N—H···N hydrogen bonds (Haghiri *et al.*, 2003). Huang *et al.* report a 4-benzyl substituted 3,5-diphenyl-1*H*-pyrazole, in which two pyrazole molecules are connected by N—H···N hydrogen bonds (Huang *et al.*, 2007). In the present paper, we report another substituted pyrazole, 4-((3,5-diphenyl-1*H*-pyrazol-4-yl)methyl)benzonitrile (Fig. 1). In the unit cell, two pyrazole molecules are bridged by one ethanol molecule through N—H···O and O–H···N hydrogen bonds forming a dimer. These dimers are linked by C—H···N hydrogen bonds between the phenyl group and benzonitrile, C—H···π hydrogen bonds between the phenyl groups and π ···π interactions between benzonitrile planes as showed in Fig.2. The centroid-centroid contact between two benzonitrile molecules is 4.320 (1) Å.

Experimental

Hydrazine hydrate (85%) (7.06 g, 12.0 mmol) was added to a solution of 4-(2-benzoyl-3-oxo-3-phenylpropyl)benzonitrile (3.40 g, 10.0 mmol) in 20 ml e thanol. The mixture was refluxed for two hours, then cooled to room temperature to give colourless microcrystals. The crystals were filtered, washed with a minimum amount of cold ethanol and dried under vacuum (yield, of 3.2 g). Crystals were obtained by slow evaporation of a ethanol solution of the title compound. ¹H NMR (400 MHz, CDCl₃): δ 1.25 (3(i)H, t, J=7.0 Hz, CH₃), 3.73 (3*H*, q, J=7.0 Hz, CH₂), 4.16 (2(i)H, s, CH₂), 7.22 (4*H*, d, J=8.0 Hz, benzonitrile-H), 7.36 (12*H*, m, Ph—H), 7.41 (8*H*, m,Ph—H), 7.54 (4*H*, d, J=8.0 Hz, benzonitrile-H), 10.5 (2*H*,br, N—H) p.p.m.

Refinement

The imino H atom was located in a difference Fourier map and refined as riding on N2, with N–H = 0.91 Å and $U_{iso}(H) = 1.2U_{eq}(N2)$. The hydroxy H atom was located in a difference Fourier map and refined as riding on O1, with O–H = 0.77 Å and $U_{iso}(H) = 1.2U_{eq}(O1)$. The aromatic H atoms were constrained to an ideal geometry, with C—H distances of 0.93 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$. The methyl H atoms were rotated to fit the electron density, with C—H distances of 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$. The methylene H atoms were constrained to ideal geometry, with C—H distances of 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The methylene H atoms were constrained to ideal geometry, with C—H distances of 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The largest peak and deepest hole on the final difference Fourier map corresponded to 0.33 and -0.45 e.Å⁻³, and were located 0.56 and 1.55 Å from the C24 and H1 atom, respectively.

Figures

Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom numbering scheme.

Fig. 2. Crystal packing for title compound.

4-[(3,5-Diphenyl-1*H*-pyrazol-4-yl)methyl]benzonitrile ethanol hemisolvate

Crystal data	
$C_{23}H_{17}N_3 \cdot 0.5C_2H_6O$	$F_{000} = 756$
$M_r = 358.43$	$D_{\rm x} = 1.230 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/m$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yb	Cell parameters from 582 reflections
<i>a</i> = 6.1301 (12) Å	$\theta = 1.2 - 27.5^{\circ}$
<i>b</i> = 34.541 (7) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 9.4459 (19) Å	T = 291 (2) K
$\beta = 104.52 \ (3)^{\circ}$	Block, colorless
V = 1936.2 (7) Å ³	$0.25\times0.18\times0.15~mm$
7 = 1	

Data collection

Rigaku RAXIS RAPID IP diffractometer	4500 independent reflections
Radiation source: Rotating Anode	3819 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.038$
T = 291(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
Oscillation scans	$\theta_{\min} = 1.2^{\circ}$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$h = -7 \rightarrow 7$
$T_{\min} = 0.98, \ T_{\max} = 0.99$	$k = 0 \rightarrow 44$
5538 measured reflections	$l = 0 \rightarrow 12$

Refinement

Refinement on F^2

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.079$ $wR(F^2) = 0.214$

S = 1.08

4500 reflections

256 parameters

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
C1	0.1507 (2)	0.17406 (4)	0.55204 (15)	0.0431 (3)	
C2	-0.0612 (3)	0.17793 (4)	0.43839 (15)	0.0448 (4)	
C3	-0.2417 (3)	0.19860 (5)	0.45897 (18)	0.0503 (4)	
H3	-0.2270	0.2121	0.5460	0.060*	
C4	-0.4435 (3)	0.20000 (6)	0.3553 (2)	0.0627 (5)	
H4	-0.5630	0.2141	0.3731	0.075*	
C5	-0.4694 (4)	0.18040 (7)	0.2239 (2)	0.0689 (5)	
Н5	-0.6062	0.1809	0.1536	0.083*	
C6	-0.2842 (4)	0.15971 (7)	0.1993 (2)	0.0692 (5)	
H6	-0.2973	0.1473	0.1102	0.083*	
C7	-0.0844 (3)	0.15756 (6)	0.30514 (18)	0.0599 (5)	
H7	0.0345	0.1429	0.2894	0.072*	
C8	0.2659 (2)	0.14007 (5)	0.60830 (15)	0.0441 (3)	
C9	0.4582 (2)	0.15295 (4)	0.71101 (15)	0.0434 (3)	
C10	0.6524 (3)	0.13115 (4)	0.80378 (16)	0.0454 (4)	
C11	0.8684 (3)	0.14761 (5)	0.83408 (16)	0.0493 (4)	

H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.199P)^{2} + 0.1P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.33$ e Å⁻³ $\Delta\rho_{min} = -0.45$ e Å⁻³ Extinction correction: none

H11	0 8897	0 1717	0 7959	0.059*			
C12	1.0487 (3)	0.12795 (6)	0.92064 (19)	0.0601 (5)			
H12	1 1910	0 1392	0.9421	0.072*			
C13	1 0214 (4)	0.09147 (7)	0.9765 (2)	0.0699 (6)			
H13	1 1441	0.0782	1 0338	0.084*			
C14	0 8116 (4)	0.07567 (7)	0.9456 (3)	0 0749 (6)			
H14	0 7921	0.0513	0.9826	0.090*			
C15	0.6261(3)	0.09482 (5)	0.86047 (19)	0.0568 (4)			
H15	0 4843	0.0834	0.8413	0.068*			
C16	0 1811 (3)	0.09973 (5)	0.56892 (16)	0.0469 (4)			
H16B	0.0213	0 1013	0 5220	0.056*			
H16C	0.1967	0.0853	0.6590	0.056*			
C17	0 2924 (2)	0 07649 (4)	0 47008 (14)	0.0435 (3)			
C18	0.4823 (3)	0.08927 (5)	0.42526 (18)	0.0506 (4)			
H18	0.5419	0.1136	0.4548	0.061*			
C19	0.5828 (3)	0.06676 (5)	0.33870 (19)	0.0568 (4)			
H19	0.7059	0.0761	0.3083	0.068*			
C20	0.4983 (3)	0.03003 (5)	0.29748 (18)	0.0532 (4)			
C21	0.3082 (3)	0.01678 (5)	0.3381 (2)	0.0601 (5)			
H21	0.2481	-0.0074	0.3076	0.072*			
C22	0.2100 (3)	0.03981 (5)	0.42376 (19)	0.0554 (4)			
H22	0.0844	0.0306	0.4516	0.066*			
C23	0.6143 (3)	0.00582 (6)	0.2168 (2)	0.0618 (5)			
N1	0.2632 (2)	0.20491 (4)	0.62334 (13)	0.0475 (3)			
N2	0.4512 (2)	0.19150 (4)	0.71881 (13)	0.0475 (3)			
H2	0.5363	0.2094	0.7792	0.105 (10)*			
N3	0.7146 (4)	-0.01378 (7)	0.1585 (2)	0.0833 (6)			
01	0.7504 (4)	0.2500	0.8444 (3)	0.0823 (7)			
H1	0.6334	0.2500	0.8613	0.18 (3)*			
C24	0.8776 (18)	0.2500	0.9996 (6)	0.163 (3)			
H24A	0.8465	0.2729	1.0505	0.196*	0.50		
H24B	0.8465	0.2271	1.0505	0.196*	0.50		
C25	1.1059 (16)	0.2500	0.9826 (17)	0.303 (9)			
H25A	1.1067	0.2398	0.8881	0.455*	0.50		
H25B	1.1993	0.2342	1.0572	0.455*	0.50		
H25C	1.1631	0.2760	0.9911	0.455*	0.50		
Atomic displacement	Atomic displacement parameters (λ^2)						
since mapping of the	r						

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0417 (8)	0.0438 (8)	0.0423 (7)	-0.0021 (5)	0.0078 (5)	-0.0025 (5)
C2	0.0454 (8)	0.0420 (7)	0.0467 (7)	-0.0016 (6)	0.0110 (5)	-0.0011 (5)
C3	0.0501 (9)	0.0412 (8)	0.0571 (8)	0.0015 (6)	0.0088 (6)	0.0014 (5)
C4	0.0541 (10)	0.0592 (11)	0.0710 (10)	0.0064 (8)	0.0084 (7)	0.0025 (8)
C5	0.0619 (12)	0.0676 (13)	0.0693 (11)	-0.0075 (9)	0.0015 (8)	0.0009 (8)
C6	0.0777 (14)	0.0682 (13)	0.0570 (9)	-0.0025 (10)	0.0080 (8)	-0.0080 (8)
C7	0.0664 (11)	0.0596 (11)	0.0527 (9)	0.0001 (8)	0.0129 (7)	-0.0047 (7)
C8	0.0424 (8)	0.0438 (8)	0.0458 (7)	-0.0031 (5)	0.0106 (5)	-0.0035 (5)

C9	0.0427 (8)	0.0419 (7)	0.0459 (7)	-0.0031 (5)	0.0118 (5)	-0.0037 (5)
C10	0.0461 (8)	0.0409 (7)	0.0480 (7)	0.0044 (5)	0.0099 (5)	-0.0078 (5)
C11	0.0436 (8)	0.0556 (9)	0.0483 (7)	-0.0001 (6)	0.0105 (5)	-0.0020 (6)
C12	0.0439 (9)	0.0719 (12)	0.0602 (9)	0.0070 (7)	0.0048 (6)	-0.0058 (7)
C13	0.0653 (12)	0.0716 (13)	0.0684 (11)	0.0233 (10)	0.0085 (8)	0.0016 (8)
C14	0.0811 (15)	0.0581 (12)	0.0815 (12)	0.0106 (10)	0.0128 (10)	0.0108 (9)
C15	0.0584 (10)	0.0460 (9)	0.0627 (9)	-0.0032 (7)	0.0089 (7)	-0.0034 (6)
C16	0.0397 (8)	0.0448 (8)	0.0521 (8)	-0.0028 (5)	0.0037 (5)	-0.0045 (5)
C17	0.0407 (8)	0.0377 (7)	0.0477 (7)	-0.0010 (5)	0.0030 (5)	-0.0011 (5)
C18	0.0523 (9)	0.0401 (8)	0.0589 (8)	-0.0070 (6)	0.0128 (6)	-0.0081 (5)
C19	0.0620 (10)	0.0465 (9)	0.0630 (9)	-0.0055 (7)	0.0179 (7)	-0.0041 (7)
C20	0.0582 (10)	0.0408 (8)	0.0577 (8)	0.0018 (7)	0.0088 (6)	-0.0055 (6)
C21	0.0592 (10)	0.0435 (9)	0.0736 (10)	-0.0090 (7)	0.0090 (7)	-0.0153 (7)
C22	0.0515 (9)	0.0458 (9)	0.0671 (9)	-0.0064 (7)	0.0116 (6)	-0.0069 (6)
C23	0.0682 (12)	0.0465 (9)	0.0722 (10)	0.0033 (8)	0.0201 (8)	-0.0055 (7)
N1	0.0451 (7)	0.0426 (7)	0.0512 (7)	-0.0005 (5)	0.0053 (5)	-0.0063 (5)
N2	0.0458 (7)	0.0431 (7)	0.0509 (7)	-0.0007 (5)	0.0070 (5)	-0.0068 (5)
N3	0.0951 (16)	0.0631 (12)	0.0988 (13)	0.0049 (10)	0.0375 (11)	-0.0144 (10)
O1	0.0603 (14)	0.0570 (13)	0.1096 (17)	0.000	-0.0159 (10)	0.000
C24	0.250 (10)	0.109 (5)	0.098 (3)	0.000	-0.015 (4)	0.000
C25	0.108 (6)	0.219 (12)	0.469 (19)	0.000	-0.142 (9)	0.000

Geometric parameters (Å, °)

C1—N1	1.354 (2)	C14—H14	0.9300
C1—C8	1.404 (2)	С15—Н15	0.9300
C1—C2	1.469 (2)	C16—C17	1.517 (2)
C2—C3	1.371 (2)	C16—H16B	0.9700
C2—C7	1.418 (2)	C16—H16C	0.9700
C3—C4	1.372 (2)	C17—C22	1.393 (2)
С3—Н3	0.9300	C17—C18	1.406 (2)
C4—C5	1.387 (3)	C18—C19	1.380 (2)
C4—H4	0.9300	C18—H18	0.9300
С5—С6	1.410 (4)	C19—C20	1.389 (2)
С5—Н5	0.9300	С19—Н19	0.9300
С6—С7	1.375 (3)	C20—C21	1.393 (3)
С6—Н6	0.9300	C20—C23	1.434 (2)
С7—Н7	0.9300	C21—C22	1.376 (3)
C8—C9	1.398 (2)	C21—H21	0.9300
C8—C16	1.501 (2)	C22—H22	0.9300
C9—N2	1.335 (2)	C23—N3	1.144 (3)
C9—C10	1.493 (2)	N1—N2	1.355 (2)
C10-C15	1.390 (2)	N2—H2	0.910
C10-C11	1.403 (2)	O1—C24	1.478 (6)
C11—C12	1.378 (2)	O1—H1	0.77
C11—H11	0.9300	C24—C25	1.448 (15)
C12—C13	1.393 (3)	C24—H24A	0.9700
C12—H12	0.9300	C24—H24B	0.9700
C13—C14	1.359 (4)	C25—H25A	0.9600

C13—H13	0.9300	С25—Н25В	0.9600
C14—C15	1.385 (3)	C25—H25C	0.9600
N1—C1—C8	108.95 (13)	C10—C15—H15	120.1
N1—C1—C2	122.61 (13)	C8—C16—C17	117.6 (1)
C8—C1—C2	128.41 (13)	C8—C16—H16B	107.9
C3—C2—C7	118.65 (16)	С17—С16—Н16В	107.9
C3—C2—C1	122.74 (13)	C8—C16—H16C	107.9
C7—C2—C1	118.50 (14)	С17—С16—Н16С	107.9
C2—C3—C4	122.14 (16)	H16B—C16—H16C	107.2
С2—С3—Н3	118.9	C22—C17—C18	116.97 (14)
С4—С3—Н3	118.9	C22—C17—C16	119.40 (14)
C3—C4—C5	120.13 (19)	C18—C17—C16	123.60 (13)
C3—C4—H4	119.9	C19—C18—C17	121.86 (15)
С5—С4—Н4	119.9	C19—C18—H18	119.1
C4—C5—C6	118.58 (19)	С17—С18—Н18	119.1
С4—С5—Н5	120.7	C18—C19—C20	119.35 (17)
С6—С5—Н5	120.7	С18—С19—Н19	120.3
C7—C6—C5	121.01 (18)	С20—С19—Н19	120.3
С7—С6—Н6	119.5	C19—C20—C21	120.14 (16)
С5—С6—Н6	119.5	C19—C20—C23	118.81 (17)
C6—C7—C2	119.43 (18)	C21—C20—C23	121.03 (16)
С6—С7—Н7	120.3	C22—C21—C20	119.45 (16)
С2—С7—Н7	120.3	C22—C21—H21	120.3
C9—C8—C1	104.66 (14)	C20—C21—H21	120.3
C9—C8—C16	130.29 (14)	C21—C22—C17	122.19 (16)
C1—C8—C16	124.91 (14)	C21—C22—H22	118.9
N2—C9—C8	108.83 (14)	C17—C22—H22	118.9
N2—C9—C10	120.16 (13)	N3—C23—C20	176.7 (2)
C8—C9—C10	131.01 (14)	C1—N1—N2	107.7 (1)
C15-C10-C11	118.84 (15)	C9—N2—N1	109.7 (1)
C15—C10—C9	121.93 (15)	C9—N2—H2	134
C11—C10—C9	119.23 (14)	N1—N2—H2	116
C12-C11-C10	119.81 (17)	C24—O1—H1	95
C12—C11—H11	120.1	C25—C24—O1	100.0 (7)
C10-C11-H11	120.1	C25—C24—H24A	111.8
C11—C12—C13	121.05 (18)	O1—C24—H24A	111.8
C11—C12—H12	119.5	C25—C24—H24B	111.8
C13—C12—H12	119.5	O1—C24—H24B	111.8
C14—C13—C12	118.64 (19)	H24A—C24—H24B	109.5
C14—C13—H13	120.7	C24—C25—H25A	109.5
C12—C13—H13	120.7	C24—C25—H25B	109.5
C13—C14—C15	121.9 (2)	H25A—C25—H25B	109.5
C13—C14—H14	119.1	C24—C25—H25C	109.5
C15-C14-H14	119.1	H25A—C25—H25C	109.5
C14—C15—C10	119.80 (19)	H25B—C25—H25C	109.5
С14—С15—Н15	120.1		
N1—C1—C2—C3	-51.3 (2)	C10-C11-C12-C13	1.4 (3)
	× /		× /

N1—C1—C2—C7	132.54 (17)	C12—C13—C14—C15	0.1 (3)
C8—C1—C2—C7	-49.6 (2)	C13—C14—C15—C10	0.3 (3)
C7—C2—C3—C4	0.3 (3)	C11-C10-C15-C14	0.2 (2)
C1—C2—C3—C4	-175.85 (17)	C9-C10-C15-C14	179.78 (16)
C2—C3—C4—C5	-0.6 (3)	C9-C8-C16-C17	-78.51 (19)
C3—C4—C5—C6	-0.9 (3)	C1-C8-C16-C17	106.47 (16)
C4—C5—C6—C7	2.6 (3)	C8—C16—C17—C22	-176.18 (14)
C5—C6—C7—C2	-2.9 (3)	C8—C16—C17—C18	6.1 (2)
C3—C2—C7—C6	1.4 (3)	C22-C17-C18-C19	0.3 (2)
C1—C2—C7—C6	177.75 (17)	C16—C17—C18—C19	178.05 (15)
N1—C1—C8—C9	-3.01 (16)	C17—C18—C19—C20	-1.7 (3)
C2—C1—C8—C9	178.87 (13)	C18—C19—C20—C21	2.7 (3)
N1-C1-C8-C16	173.06 (13)	C18—C19—C20—C23	-175.38 (17)
C2-C1-C8-C16	-5.1 (2)	C19—C20—C21—C22	-2.3 (3)
C1-C8-C9-N2	2.43 (15)	C23—C20—C21—C22	175.70 (17)
C16—C8—C9—N2	-173.35 (14)	C20—C21—C22—C17	0.9 (3)
C1—C8—C9—C10	-177.27 (14)	C18—C17—C22—C21	0.1 (2)
C16—C8—C9—C10	7.0 (2)	C16—C17—C22—C21	-177.77 (16)
N2-C9-C10-C15	145.60 (15)	C8—C1—N1—N2	2.50 (16)
C8—C9—C10—C15	-34.7 (2)	C2-C1-N1-N2	-179.25 (12)
N2-C9-C10-C11	-34.83 (19)	C8—C9—N2—N1	-1.00 (16)
C8—C9—C10—C11	144.84 (15)	C10—C9—N2—N1	178.74 (12)
C15-C10-C11-C12	-1.0 (2)	C1—N1—N2—C9	-0.93 (16)
C9-C10-C11-C12	179.42 (14)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1—H1…N2	0.77	2.53	2.786 (2)	102
O1—H1···N2 ⁱ	0.77	2.53	2.786 (2)	102
N2—H2…O1	0.91	1.91	2.786 (2)	160
C15—H15…N3 ⁱⁱ	0.93	2.70	3.470 (3)	141
C6—H6…Cg1 ⁱⁱⁱ	0.93	2.72	3.601 (2)	159
	. 1 (***) 1	1		

Symmetry codes: (i) *x*, -*y*+1/2, *z*; (ii) -*x*+1, -*y*, -*z*+1; (iii) *x*-1, *y*, *z*-1.

Fig. 1

